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ABSTRACT: Pd(II)-catalyzed cross-coupling of C(sp3)−
H bonds with organosilicon coupling partners has been
achieved for the first time. The use of a newly developed
quinoline-based ligand is essential for the cross-coupling
reactions to proceed.

Inspired by Pd(0)-catalyzed cross-coupling reactions,1 we
embarked on the development of Pd(II)-catalyzed cross-

coupling of C−H bonds with organometallic reagents. A
Pd(II)/Pd(0) catalytic cycle was established for the cross-
coupling of C(sp2)−H bonds with organotin2 and organoboron
reagents3 with limited substrate scopes. Subsequently, C−H
cross-coupling with readily available organoboron reagents has
been expanded to broadly useful substrates including benzoic
acids and phenylacetic acids.4,5 In contrast, analogous cross-
coupling of C(sp3)−H bonds with organometallic reagents has
met with limited success.6 Although pyridine-directed C(sp3)−
H cross-coupling with alkylboronic acids has been successfully
achieved,3 extending this methodology to aliphatic acid
substrates affords poor yields (<30%) (Scheme 1, eq 1).4

The development of an efficient N-methoxyamide directing
group allowed for a rare cross-coupling of β-C(sp3)−H bonds
with boronic acids (eq 2).7 Unfortunately, this protocol is
incompatible with substrates containing α-hydrogen atoms.
Although β-C(sp3)−H arylation with aryl halides via Pd(II)/
Pd(IV) catalysis has been developed to accommodate a broader
range of substrates,8 the C(sp3)−H cross-coupling reaction
involving a Pd(II)/Pd(0) catalytic cycle offers a distinct
platform for ligand development that will lead to improved

catalysis and selectivity. Herein we report the first example of β-
C(sp3)−H cross-coupling of carboxylic acids with arylsilanes
using a perfluorinated N-arylamide auxiliary (eq 3).9 The
discovery of a new quinoline-based ligand is crucial for the
development of this cross-coupling of C(sp3)−H bonds with
arylsilanes.
A wide range of organosilicon reagents have been

successfully used as coupling partners in the Hiyama cross-
coupling reactions of aryl halides.1f,10 Important advances have
also been made in the cross-coupling of alkyl halides with
arylsilanes.11 Despite significant progress in Pd-,12,13 Rh-,14 and
Ni-catalyzed15 C(sp2)−H cross-coupling with arylsilanes, cross-
coupling of inert C(sp3)−H bonds with organosilicon reagents
remains to be reported. Encouraged by our recent observation
that pyridine- and quinoline-based ligands promote C(sp3)−H
olefination via a Pd(II)/Pd(0) catalytic cycle,16 we launched
our efforts to develop new ligands that could promote β-
C(sp3)−H cross-coupling of carboxylic acid derivatives with
organosilicon reagents.
Our experiments commenced with an investigation of the

coupling of alanine-derived amide 1 with various organosilicon
reagents (see the Supporting Information). We examined
various oxidants and solvents as well as those additives
previously proven to be beneficial to the Hiyama cross-
coupling. We found the reaction of amide 1 with 2 equiv of
triethoxyphenylsilane (2a) in the presence of 10 mol %
Pd(OAc)2, 20 mol % 2-picoline (L1), and 3 equiv of AgF in
1,4-dioxane at 110 °C afforded the desired product 3a in 40%
yield. AgF proved to be the only effective additive, which has
dual functions in this transformation: (1) silver salts are among
the most efficient and commonly used oxidants to reoxidize
Pd(0) to Pd(II) in Pd(II)/Pd(0) catalytic cycles,17 and (2)
fluoride sources are known to activate organosilicon coupling
partners, promoting transmetalation of aryl groups to Pd(II).18

Analysis of the reaction mixture showed that a substantial
amount of organosilicon reagents were homocoupled to give
the biaryl side product. In the absence of ligands, the desired
coupling reaction did not proceed, indicating a significant
ligand effect. We therefore began to examine a variety of
substituted pyridine ligands that could potentially accelerate the
C(sp3)−H cross-coupling further in order to outcompete the
homocoupling process (Table 1). 2,6-Lutidine (L2) and 2,6-
dimethoxypyridine (L3) gave the desired product in lower
yields (28% and 13%, respectively), demonstrating that
increasing the steric bulk and electron-donating ability of
pyridine-based ligands has a negative impact on the reaction.
However, replacement of L1 with electron-deficient 2-
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Scheme 1. Palladium-Catalyzed C(sp3)−H Activation/Cross-
Coupling Reactions of Carboxylic Acid Derivatives
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trifluoromethylpyridine (L4) resulted in a complete loss of
reactivity.
While these pyridine ligands have been previously shown to

promote arylation of C(sp3)−H bonds with aryl iodides,19 the
failed attempts to improve the reaction suggested that the
transmetalation and reductive elimination at the Pd(II) center
require a different type of ligands. The tricyclic quinoline
ligands L5 and L6 were therefore chosen because they were
previously used to promote Pd-catalyzed C(sp3)−H olefination
reactions via Pd(II)/Pd(0) catalysis.16 We found that the use of
L6 increased the yield of 3a to 48%. On the basis of this
finding, we systematically surveyed different types of quinoline-
based ligands. Gratifyingly, the simple quinoline (L7) further
improved the reactivity, giving 3a in 56% yield. While the
substituent at the 6-position of quinoline L8 did not affect the
yield, installation of a methyl group at the 8-position (L9)
drastically decreased the reaction efficiency. Any substitution at
the 2-position of quinoline-based ligands (L10, L11) was
detrimental to the cross-coupling reaction. These investigations
showed that this Hiyama-type cross-coupling is very sensitive to
the steric effect of quinoline-based ligands. In terms of
electronic effects, electron-donating groups at the 3- or 4-
positions of the quinoline (L12−L14) gave moderate yields
from 48% to 52%, whereas electron-deficient 4-chloroquinoline
(L15) afforded only 34% yield. Given that quinolines

containing fused carbocylic rings can have distinct steric and
electronic properties, we introduced five-, six-, and seven-
membered rings into the ligands (L16−L18) and found that
L18 provided the highest yield of 70%. The yield was further
increased to 93% when a second batch of 2a and AgF was
added after 8 h.
Cross-coupling reactions of alanine-derived amide 1 with a

broad range of electron-rich and electron-poor triethoxyar-
ylsilanes were carried out under the standard conditions (Table
2). Triethoxyarylsilanes containing methyl and methoxy groups

on the aryl ring afforded desired products in excellent yields
(3b, 3c). p-Fluoro, -chloro, -bromo, and -trifluoromethyl
groups were well-tolerated, furnishing phenylalanine derivatives
in yields from 75% to 82% (3d−g). This reaction is also
compatible with meta- and ortho-substituted triethoxyarylsi-
lanes (3h and 3i, respectively). Furthermore, the cyclobutyl
C(sp3)−H bond in amide substrate 4 derived from 1-
aminocyclobutane-1-carboxylic acid was successfully function-
alized to afford the corresponding β-alkyl-β-aryl-α-amino acid
derivatives in 72% yield with high levels of diastereoselectivity
(Scheme 2). The cross-coupling reaction was also carried out
on a gram scale without a noticeable decrease in yield (3e).
Importantly, in the absence of external inorganic bases,
complete retention of α-chirality (3b) was observed in the β-
C(sp3)−H cross-coupling using amide 1 (99% ee) as the
substrate.
To investigate the compatibility of this protocol with other

aliphatic acids, amide 6a derived from 2-methylpentanoic acid
was subjected to the standard conditions and afforded the
arylated product 7a in 45% yield. Extensive optimization

Table 1. Screening of Ligands for C(sp3)−H Cross-Coupling
with Arylsilanesa,b

aReaction conditions: substrate 1 (0.1 mmol), 2a (2.0 equiv),
Pd(OAc)2 (10 mol %), ligand (20 mol %), AgF (3.0 equiv), 1,4-
dioxane (1.0 mL), 110 °C, 12 h. bThe yields were determined by 1H
NMR analysis of the crude products using CH2Br2 as the internal
standard. cAfter 8 h, a second batch of 2a (2.0 equiv) and AgF (3.0
equiv) was added, and the reaction proceeded for another 10 h.

Table 2. Synthesis of Phenylalanine Derivatives using
Ligand-Enabled C(sp3)−H Cross-Coupling with
Arylsilanesa,b

aReaction conditions: substrate 1 (0.1 mmol), 2 (2.0 equiv),
Pd(OAc)2 (10 mol %), L18 (20 mol %), AgF (3.0 equiv), 1,4-dioxane
(1.0 mL), 110 °C. A second batch of 2 (2.0 equiv) and AgF (3.0
equiv) was added at 8 h. The reactions were run for 18 h total.
bIsolated yields are shown. cThe ee value was determined by chiral
HPLC. dThe isolated yield of a gram-scale reaction is shown in
parentheses.
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including changing the ligand and the base (see the Supporting
Information) improved the yield to 67% (Table 3). Under

these new conditions, a variety of amides derived from aliphatic
acids were arylated in good yields (7b−d). The cross-coupling
of amide 6e containing a trifluoromethyl group afforded the
desired product 7e in 80% yield. A number of aryl groups at the
β- and γ-positions of the amide substrates were tolerated (7e−
i). The reaction was also tolerant of different types of ether
groups, including a benzyl-protected β-hydroxyl group (7j−l).
Various triethoxyarylsilane partners containing methyl, chloro,
and trifluoromethyl groups were coupled with substrate 6l to
give the desired products in good yields (7m−o). It should be
noted that arylation of alanine-derived amide 1 also proceeds

under these conditions but leads to substantial racemization of
the product.
While the β- and γ-aryl substituents did not interfere with the

β-C(sp3)−H activation, the α-aryl group in the ibuprofen-
derived substrate 8 was preferentially ortho-arylated under
these conditions (Scheme 3). To achieve the site-selective β-

C−H arylation of 8, we turned to our previously developed
arylation protocol with aryl iodides and successfully obtained
the β-arylated product 10 in 83% yield.16 The observed
opposite site selectivity with Pd(II)/Pd(IV)16 and Pd(II)/
Pd(0) catalysis speaks to the importance of developing different
catalytic cycles for C−H activation reactions. We anticipate that
the ability to arylate C−H bonds at different positions using
two different protocols will be highly useful in synthesis.
In conclusion, ligand-enabled cross-coupling of β-C(sp3)−H

bonds in carboxylic acid derivatives with arylsilanes has been
achieved using a new quinoline-based ligand. The development
of this coupling reaction further demonstrates the potential
utility of quinoline-based ligands in Pd-catalyzed C−H
activation reactions.
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